Dual J-K Flip-Flop with Set and Reset

High-Performance Silicon-Gate CMOS

The SL74HC109 is identical in pinout to the LS/ALS109. The device inputs are compatible with standard CMOS outputs, with pullup resistors, they are compatible with LS/ALSTTL outputs.

This device consists of two J-K flip-flops with individual set, reset, and clock inputs. Changes at the inputs are reflected at the outputs with the next low-to-high transition of the clock. Both Q to Q outputs are available from each flip-flop.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices

PIN ASSIGNMENT

FUNCTION TABLE

Inputs					Outputs	
Set	Reset	Clock	J	$\overline{\mathrm{K}}$	Q	$\overline{\mathrm{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	-	L	L	L	H
H	H	-	H	L	Toggle	
H	H	-	L	H	No Change	
H	H	-	H	H	H	L
H	H	L	X	X	No Change	

X = Don't care
*Both outputs will remain high as long as Set and
Reset are low, but the output states are unpredictable if Set and Reset go high simultaneously.

MAXIMUMRATINGS*

Symbol	Parameter	Value	Unit
$V_{c c}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
VIN	DC Input Voltage (Referenced to GND)	-1.5 to $\mathrm{V}_{\mathrm{cc}}+1.5$	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
IIN	DC Input Current, per Pin	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, Vcc and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	$\begin{gathered} 750 \\ 500 \end{gathered}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

"Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

+ Derating - Plastic DIP: - $10 \mathrm{~mW} / /^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max
Unit				
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types		-55	+125
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1)	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{C}$		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	1000
		$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	500
		0	400	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq (Vin or $\left.V_{\text {out }}\right) \leq \mathrm{V}_{\text {cc }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{Vc}). Unused outputs must be left open.

DCELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
				$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 85 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \text { Vout }=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\text {cc }}-0.1 \mathrm{~V} \\ & \mid \text { Iout } \mid \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	V
VIL	Maximum Low -Level Input Voltage	$\begin{aligned} & \text { Vout }=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\text {cc }}-0.1 \mathrm{~V} \\ & \mid \text { Iout } \mid \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	V
Vон	Minimum High-Level Output Voltage	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \\ & \mid \text { Iout } \end{aligned} \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|{ }_{\mid \text {Iout }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\lvert\, \begin{array}{l} \text { Iout } \end{array} \leq 5.2 \mathrm{~mA}\right. \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	
VoL	Maximum Low-Level Output Voltage	$\begin{aligned} & V_{\text {IN }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ & \mid \text { Iout } \end{aligned} \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \left\|{ }_{\text {Iout }}\right\| \leq 4.0 \mathrm{~mA} \\ & \mid \text { Iout } \mid \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	
In	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{Iout}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4.0	40	80	$\mu \mathrm{A}$

ACELECTRICAL CHARACTERISTICS $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \text { Vсc } \\ \text { V } \end{gathered}$	Guaranteed Limit			Unit
			$\begin{gathered} 25^{\circ} \mathrm{C} \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
fmax	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 6 \\ 30 \\ 35 \end{gathered}$	$\begin{aligned} & 4.8 \\ & 24 \\ & 28 \end{aligned}$	$\begin{gathered} 4.0 \\ 20 \\ 24 \end{gathered}$	MHz
	Maximum Propagation Delay, Clock to Q or Q (Figures 1 and 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 175 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 220 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} 265 \\ 53 \\ 45 \end{gathered}$	ns
$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Set or Reset to Q or Q (Figures 2 and 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 230 \\ 46 \\ 39 \end{gathered}$	$\begin{gathered} 290 \\ 58 \\ 49 \end{gathered}$	$\begin{gathered} 345 \\ 69 \\ 59 \end{gathered}$	ns
$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {thL }}$	Maximum Output Transition Time, Any Output (Figures 1 and 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 22 \\ 19 \end{gathered}$	ns
Cin	Maximum Input Capacitance	-	10	10	10	pF

C_{PD}	Power Dissipation Capacitance (Per Flip-Flop)	Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
	Used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2} \mathrm{f}+\mathrm{ICC} \mathrm{V}_{\mathrm{CC}}$	40	

TIMING REQUIREMENTS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	Vcc V	Guaranteed Limit			Unit
			$25^{\circ} \mathrm{C}$ to - $55^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
tsu	Minimum Setup Time, J or \bar{K} to Clock (Figure 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$	$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$	$\begin{gathered} 150 \\ 30 \\ 26 \end{gathered}$	ns
th_{h}	Minimum Hold Time, Clock to J or K (Figure 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
trec	Minimum Recovery Time, Set or Reset Inactive to Clock (Figure 2)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
${ }_{\text {t }}$	Minimum Pulse Width, Set or Reset (Figure 2)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$	$\begin{aligned} & 12 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width,Clock (Figure 1)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 12 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

Figure 1. Switching Waveforms

Figure 3. Switching Waveforms

Figure 2. Switching Waveforms

* Includes all probe and jig capacitance.

Figure 4. Test Circuit

EXPANDED LOGICDIAGRAM

